
@mpredli
1

Using Design Patterns
in App Development

Michael P. Redlich

@mpredli

Who’s Mike?

• BS in CS from

• “Petrochemical Research Organization”

• InfoQ Java Queue News Editor

• Garden State Java User Group

• Jakarta EE Ambassadors

2

@mpredli

Objectives

• What are Design Patterns?

• How Design Patterns Solve Design
Problems

• Design Pattern Categories

• Review Factory, Decorator and Observer
Design Patterns (with demos!)

3

@mpredli

What are Design
Patterns?

4

@mpredli

What are Design
Patterns? (1)

• Recurring solutions to software design
problems that are repeatedly found in real-
world application development

• All about the design and interaction of
objects

5

@mpredli

What are Design
Patterns? (2)

• Four essential elements:

• pattern name

• problem

• solution

• consequences

6

@mpredli

What are Design
Patterns? (3)

• A pattern is a solution to a problem in a
context

• A context is the situation to which a
pattern applies

7

@mpredli

What are Design
Patterns? (4)

• The problem refers to the desired goal in
the context, but also refers to any
constraints that may occur

• The solution is a general design that anyone
can apply

8

@mpredli

How Design Patterns
Solve Design Problems

9

@mpredli

Design Patterns Solve
Design Problems (1)

• Help identify less obvious abstractions

• Clients should only know about abstract
classes that define an interface

• Reduce implementation dependencies

10

@mpredli

Design Patterns Solve
Design Problems (2)

• Avoid:

• directly creating objects

• dependencies on specific operations

• algorithmic dependencies

• tight coupling

11

@mpredli

Thinking in Design
Patterns

• Keep to simple

• Design patterns are not the “magic bullet”

• Know when to apply a design pattern

• Don’t be afraid to remove a design pattern

12

@mpredli

Design Pattern
Categories

13

@mpredli

Design Pattern
Categories

• Creational

• Abstract the instantiation process

• Dynamically create objects so they don’t have to
be instantiated directly

• Structural

• Compose groups of objects into larger
structures

14

@mpredli

Design Pattern
Categories

• Behavioral

• Define communication among objects in a given
system

• Provide better control of flow in a complex
application

15

@mpredli

Creational Patterns

• Abstract Factory

• Builder

• Factory Method

• Prototype

• Singleton

16

@mpredli

Structural Patterns
• Adapter

• Bridge

• Composite

• Decorator

• Facade

• Flyweight

• Proxy

17

@mpredli

Behavioral Patterns
• Chain of Responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template Method

• Visitor

18

@mpredli

What are OO Design
Principles?

• A set of underlying principles for creating
flexible designs that are easy to maintain
and adaptable to change

• Understanding the basics of OOP isn’t
enough

19

@mpredli

Some OO Design
Principles (1)

• Encapsulate What Varies

• Program to Interfaces, Not
Implementations

• Favor Composition Over Inheritance

• Classes Should Be Open for Extension, But
Closed for Modification

20

@mpredli

Some OO Design
Principles (2)

• Strive for Loosely Coupled Designs
Between Objects That Interact

• A Class Should Have Only One Reason to
Change

21

@mpredli

Let’s Check Out These
Patterns

22

@mpredli

Factory Method

• Intent

• Defines an interface for creating an object, but
lets subclasses decide which classes to
instantiate

• Design Principles

• Depend on abstractions, not concrete classes

• AKA The Dependency Inversion Principle

23

@mpredli

Generic Design

24

@mpredli

Demo

25

@mpredli

Decorator

• Intent

• Dynamically attaches additional
responsibilities to an object

• Provides an alternative to subclassing

• Design Principle

• Classes should be open for extension, but
closed for modification

26

@mpredli

Generic Design

27

@mpredli

Demo

28

@mpredli

Observer

• Intent

• Defines a one-to-many dependency among
objects such that when one object changes
state, all of its dependents are notified and
updated

• Design Principle

• Strive for loosely coupled designs that
interact

29

@mpredli

Generic Design

30

@mpredli

Demo

31

@mpredli

Local Java User Groups
(1)

• Garden State Java Users Group (GSJUG)

• facilitated by the GSJUG Leadership Team

• gsjug.org

• NYJavaSIG

• facilitated by Frank Greco, et.al

• javasig.com

32

@mpredli

Local Java User Groups
(2)

• PhillyJUG

• facilitated by Paul Burton, et. al.

• meetup.com/PhillyJUG

• Jersey City Java Users Group

• facilitated by Amitai Schleier

• meetup.com/Jersey-City-Java-
User-Group-JC-JUG/

33

@mpredli

Local Java User Groups
(3)

• Capital District Java Developers Network

• facilitated by Dan Patsey

• cdjdn.com

• currently restructuring

34

@mpredli

Gang of Four

• Erich Gamma

• Richard Helm

• Ralph Johnson

• John Vlissides

• Design Patterns - Elements of Reusable
Object-Oriented Software

35

@mpredli

Gang of Four Next
Generation?

• Eric Freeman

• Elisabeth Freeman

• Kathy Sierra

• Bert Bates

• Head First Design Patterns

36

@mpredli

Further Reading

37

@mpredli
38

Resources

•java.sun.com

•headfirstlabs.com

•themeteorbook.com

•eventedmind.com

•atmosphere.meteor.com

@mpredli
39

Contact Info

mike@redlich.net

@mpredli

redlich.net

redlich.net/portfolio

github.com/mpredli01

@mpredli

Thanks!

40

