
 1

Accessing Your Stored Java Objects with the Iterator Design Pattern

by Barry A. Burd and Michael P. Redlich

Introduction

This article, the eighth in a series about design patterns, introduces the Iterator design pattern, one of the 23 design
patterns defined in the legendary 1995 book Design Patterns – Elements of Reusable Object-Oriented Software. The
authors of the book, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, are known as the Gang of Four
(GoF). The GoF book defines 23 design patterns. The patterns fall into three categories:

• A creational pattern abstracts the instantiation process.
• A structural pattern groups objects into larger structures.
• A behavioral pattern defines better communication among objects.

The Iterator design pattern fits into the behavioral category. According to the GoF book, the Iterator design pattern
“provides a way to access the elements of an aggregate object sequentially without exposing its underlying
representation.”

Motivation

Imagine that you're in charge of a sports application. You maintain the teams from one sport (such as baseball) in an
ArrayList, and maintain teams from another sport (maybe football) in an ordinary Java array. With your access to
both teams' data structures you to manage all data in the application. Here's some rudimentary code:

import java.text.DecimalFormat;

public class Sports {
 private String team;
 private int win;
 private int loss;
 private int tie;
 private double pct;

 public Sports() {
 setTeam("Team");
 setWin(0);
 setLoss(0);
 setTie(0);
 setPct(0,0,0);
 }

 public Sports(String team,int win,int loss,int tie) {
 setTeam(team);
 setWin(win);
 setLoss(loss);
 setTie(tie);
 setPct(win,loss,tie);
 }

 public String getTeam() {
 return team;
 }

 2

 public void setTeam(String team) {
 this.team = team;
 }

 public int getWin() {
 return win;
 }

 public void setWin(int win) {
 this.win = win;
 }

 public int getLoss() {
 return loss;
 }

 public void setLoss(int loss) {
 this.loss = loss;
 }

 public int getTie() {
 return tie;
 }

 public void setTie(int tie) {
 this.tie = tie;
 }

 public double getPct() {
 return pct;
 }

 public void setPct(int win,int loss,int tie) {
 if(win == 0 && loss == 0) {
 this.pct = 0.0;
 }
 else {
 this.pct = (double)win / ((double)win + (double)loss + (double)tie);
 }
 }

 public String toString() {
 DecimalFormat df = new DecimalFormat("0.000");
 return String.format("%-25s",getTeam())
 + String.format("%5d",getWin())
 + String.format("%5d",getLoss())
 + String.format("%5d",getTie()) + "\t"
 + df.format(getPct());
 }
 }

Listing 1: The Sports base class

import java.text.DecimalFormat;

public class Baseball extends Sports {
 public Baseball() {
 super();
 }

 public Baseball(String team,int win,int loss) {
 super(team,win,loss,0);

 3

 }

 public String toString() {
 DecimalFormat df = new DecimalFormat("0.000");
 return String.format("%-25s",getTeam())
 + String.format("%5d",getWin())
 + String.format("%5d",getLoss()) + "\t\t"
 + df.format(getPct());
 }
 }

Listing 2: The Baseball class

public class Football extends Sports {
 public Football() {
 super();
 }

 public Football(String team,int win,int loss,int tie) {
 super(team,win,loss,tie);
 }
 }

Listing 3: The Football class

Listing 1 shows a base class, Sports, which handles the crux of sports-related activities (i.e., getters and setters) for
team information such as team name, number of wins, losses, ties, and winning percentage (which is automatically
calculated). The derived classes Baseball and Football, shown in Listings 2 and 3, use super() for object
creation.

Notice the difference between the Baseball and Football classes. The Baseball class defines its own
toString() method. Sports fans know that there are no ties in baseball. (Do you remember the classic 24-inning
games of the past?) So the Baseball class's toString() method doesn't call getTie(). Also, the Baseball
class's second constructor has no tie parameter. The constructor sneaks the value 0 for tie in a super()call.

In Listing 4, the BaseballTeams class collects Baseball objects into a group of some kind. In Listing 5, the
FootballTeams class does the same for Football objects.

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;

public class BaseballTeams {
 private List<Sports> baseballList;
 private static final String baseballFile = "mlb2006.csv";

 public BaseballTeams() {
 buildTeamList();
 }

 public void buildTeamList() {
 baseballList = new ArrayList<Sports>();
 try {
 BufferedReader file = new BufferedReader(new FileReader(baseballFile));
 String line = null;

 4

 while((line = file.readLine()) != null) {
 String team = null;
 int win = 0;
 int loss = 0;
 StringTokenizer tokenizer = new StringTokenizer(line,",\n");
 while(tokenizer.hasMoreTokens()) {
 team = tokenizer.nextToken();
 win = new Integer(tokenizer.nextToken());
 loss = new Integer(tokenizer.nextToken());
 }
 Sports baseball = new Baseball(team,win,loss);
 baseballList.add(baseball);
 }
 file.close();
 }
 catch(FileNotFoundException exception) {
 exception.printStackTrace();
 }
 catch(IOException exception) {
 exception.printStackTrace();
 }
 }

 public List<Sports> getTeamList() {
 return baseballList;
 }
 }

Listing 4: The BaseballTeams class

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.StringTokenizer;

public class FootballTeams {
 private static final int MAX = 32;
 private Sports[] footballList;
 private static final String footballFile = "nfl2006.csv";

 public FootballTeams() {
 buildTeamList();
 }

 public void buildTeamList() {
 footballList = new Sports[MAX];
 try {
 BufferedReader file = new BufferedReader(new FileReader(footballFile));
 String line = null;
 int current = 0;
 while((line = file.readLine()) != null) {
 String team = null;
 int win = 0;
 int loss = 0;
 int tie = 0;
 StringTokenizer tokenizer = new StringTokenizer(line,",\n");
 while(tokenizer.hasMoreTokens()) {
 team = tokenizer.nextToken();
 win = new Integer(tokenizer.nextToken());
 loss = new Integer(tokenizer.nextToken());
 tie = new Integer(tokenizer.nextToken());
 }

 5

 Sports football = new Football(team,win,loss,tie);
 if(current < MAX) {
 footballList[current] = football;
 ++current;
 }
 else {
 System.err.println("--> ERROR: Array is full!");
 }
 }
 file.close();
 }
 catch(FileNotFoundException exception) {
 exception.printStackTrace();
 }
 catch(IOException exception) {
 exception.printStackTrace();
 }
 }

 public Sports[] getTeamList() {
 return footballList;
 }
 }

Listing 5: The FootballTeams class

In the real world, you'd store team information in a database. But this simple example parses small comma-separated
value (CSV) files -- the files mlb2006.csv and nfl2006.csv named in Listings 4 and 5.1 Building the teams for
each sport is relatively straightforward: You read the CSV files into a Java BufferedReader, parse the data using a
StringTokenizer, and then store the data in two data structures (an ArrayList for baseball and a Java array for
football).

Listing 6 shows a client application.

import java.util.List;

public class SportsApp {
 public static void main(String[] args) {
 // output Major League Baseball teams
 BaseballTeams baseball = new BaseballTeams();
 List<Sports> baseballList = baseball.getTeamList();
 System.out.println("### Major League Baseball 2006 ###\n");
 for(int i = 0;i < baseballList.size();++i) {
 System.out.println(baseballList.get(i));
 }

 System.out.println();

 // output National Football League teams
 FootballTeams football = new FootballTeams();
 Sports[] footballList = football.getTeamList();
 System.out.println("### National Football League 2006 ###\n");
 for(int i = 0;i < footballList.length;++i) {
 System.out.println(footballList[i]);
 }
 }
 }

1 You might be wondering why we aren’t using final 2007 standings. After all, this is 2008! Unfortunately, Mike is still smarting from the Mets
September 2007 collapse and it would pain him to see the Mets listed in second place.

 6

Listing 6: The SportsApp class – a client application

Running the application produces the following output as shown in Figure 1.

Major League Baseball 2006 ###

New York Yankees 97 65 0.599
Toronto Blue Jays 87 75 0.537
Boston Red Sox 86 76 0.531
Baltimore Orioles 70 92 0.432
Tampa Bay Devil Rays 61 101 0.377
Minnesota Twins 96 66 0.593
Detroit Tigers 95 67 0.586
Chicago White Sox 90 72 0.556
Cleveland Indians 78 84 0.481
Kansas City Royals 62 100 0.383
Oakland A's 93 69 0.574
Los Angeles Angels 89 73 0.549
Texas Rangers 80 82 0.494
Seattle Mariners 78 84 0.481
New York Mets 97 65 0.599
Philadelphia Phillies 85 77 0.525
Atlanta Braves 79 83 0.488
Florida Marlins 78 84 0.481
Washington Nationals 71 91 0.438
St. Louis Cardinals 83 78 0.516
Houston Astros 82 80 0.506
Cincinnati Reds 80 82 0.494
Milwaukee Brewers 75 87 0.463
Pittsburgh Pirates 67 95 0.414
Chicago Cubs 66 96 0.407
San Diego Padres 88 74 0.543
Los Angeles Dodgers 88 74 0.543
San Francisco Giants 76 85 0.472
Arizona Diamondbacks 76 86 0.469
Colorado Rockies 76 86 0.469

National Football League 2006 ###

New England Patriots 12 4 0 0.750
New York Jets 10 6 0 0.625
Buffalo Bills 7 9 0 0.438
Miami Dolphins 6 10 0 0.375
Baltimore Ravens 13 3 0 0.812
Cincinnati Bengals 8 8 0 0.500
Pittsburgh Steelers 8 8 0 0.500
Cleveland Browns 4 12 0 0.250
Indianapolis Colts 12 4 0 0.750
Tennessee Titans 8 8 0 0.500
Jacksonville Jaguars 8 8 0 0.500
Houston Texans 6 10 0 0.375
San Diego Chargers 14 2 0 0.875
Kansas City Chiefs 9 7 0 0.562
Denver Broncos 9 7 0 0.562
Oakland Raiders 2 14 0 0.125
Philadelphia Eagles 10 6 0 0.625
Dallas Cowboys 9 7 0 0.562
New York Giants 8 8 0 0.500
Washington Redskins 5 11 0 0.312
Chicago Bears 13 3 0 0.812
Green Bay Packers 8 8 0 0.500
Minnesota Vikings 6 10 0 0.375
Detroit Lions 3 13 0 0.188

 7

New Orleans Saints 10 6 0 0.625
Carolina Panthers 8 8 0 0.500
Atlanta Falcons 7 9 0 0.438
Tampa Bay Buccaneers 4 12 0 0.250
Seattle Seahawks 9 7 0 0.562
St. Louis Rams 8 8 0 0.500
San Francisco 49ers 7 9 0 0.438
Arizona Cardinals 5 11 0 0.312

Figure 1: The output of the Sports application

Adding an additional sport (basketball, hockey, pie-eating, or whatever) isn't difficult. But Listings 1 through 6 have a
very serious deficiency. The client code knows way too much about the implementation (the underlying data structures)
of the Sports application. In particular, the client code (Listing 6) uses an ArrayList for baseball

List<Sports> baseballList = baseball.getTeamList();

And for football, the client code uses a Java array.

Sports[] footballList = football.getTeamList();

The difference between an ArrayList and an array forces the client code's for-loops to differ slightly:

for(int i = 0;i < baseballList.size();++i) { ...

for(int i = 0;i < footballList.length;++i) { ...

These code differences are clumsy and wasteful. As you may expect, the Iterator design pattern comes to the rescue.

UML Diagram
Figure 2 shows a UML diagram for the Iterator design pattern.

Figure 2: The UML diagram for the Iterator design pattern

 8

The diagram contains five classes:

• The Iterator interface declares methods hasNext() and next().
• The concrete BaseballIterator class implements hasNext() and next() for the data structure that

stores baseball teams. (Likewise, the concrete FootballIterator class implements hasNext() and
next() for the data structure that stores football teams.)

• The SportsTeams interface declares the iterator()method. This method returns an Iterator object --
an object with the appropriate hasNext() and next() methods. In the sports application, an "appropriate"
method is one that works with either a List<Sports> object or a Sports[] array depending on the kind of
team (baseball or football).

In the official GoF book's lingo, an interface such as SportsTeams is called an aggregate. An aggregate houses a
group of objects, perhaps a Java collection of some kind (an ArrayList of baseball teams, for example). The
iterator's job is to traverse the items that the aggregate stores. Now, back to the UML diagram in Figure 2:

• The concrete BaseballTeams class implements the iterator() method for the data structure that stores
baseball teams. (Likewise, the concrete FootballTeams class implements iterator()for the data
structure that stores football teams.)

• The SportsApp class, the client application, uses aggregates and their iterators.

Implementing the Iterator Design Pattern

Listing 7 contains an Iterator interface.

public interface Iterator<T> {
 public boolean hasNext();
 public T next();
 }

Listing 7: The Iterator interface

In Listing 7, the next() method, returns the next element in the data structure. The method's return type is T, a
generic data type representing a BaseballTeam, a FootballTeam, or whatever. The hasNext() method returns
either true (meaning "yes, the client can fetch another item from the aggregate") or false (meaning "no, the
aggregate has no items worth fetching, because the client has already fetched all the aggregate's items").

Listing 8 defines an aggregate interface. This particular aggregate contains teams.

public interface SportsTeams {
 public void buildTeamList();
 public Iterator<Sports> iterator();
 }

Listing 8: The SportsTeams interface

In Listing 8, the new iterator() method returns a concrete instance of Iterator<Sports>. The return type
isn't Iterator<Baseball> or Iterator<Football> because the code uses an interface and a base class.

The next order of business is to create concrete classes from the Iterator interface. The classes are in Listings 9 and
10.

 9

import java.util.List;

public class BaseballIterator implements Iterator<Sports> {
 private int current = 0;
 private List<Sports> baseballList;

 public BaseballIterator(List<Sports> baseballList) {
 this.baseballList = baseballList;
 }

 public boolean hasNext() {
 if(current >= baseballList.size() || baseballList.get(current) == null) {
 return false;
 }
 else {
 return true;
 }
 }

 public Sports next() {
 Sports baseball = baseballList.get(current);
 ++current;
 return baseball;
 }
 }

Listing 9: The BaseballIterator class

public class FootballIterator implements Iterator<Sports> {
 private int current = 0;
 private Sports[] footballList;

 public FootballIterator(Sports[] footballList) {
 this.footballList = footballList;
 }

 public boolean hasNext() {
 if(current >= footballList.length || footballList[current] == null) {
 return false;
 }
 else {
 return true;
 }
 }

 public Sports next() {
 Sports football = footballList[current];
 ++current;
 return football;
 }
 }

Listing 10: The FootballIterator class

In Listing 9 the BaseballIterator class has its own baseballList -- an instance of
java.util.List<Sports>. In Listing 10, the FootballIterator class has its own footballList -- an
instance of Sports[]. The use of instances is called composition. (The alternative to composition is subclassing, in
which BaseballIterator and FootballIterator are subclasses of Sports collections. For the Iterator
pattern, composition is much better than subclassing.) The BaseballIterator and FootballIterator classes
use composition instead of subclassing.

 10

Listings 4 and 5 don't use the Iterator pattern. These listings contain two different getTeamList() methods:

public List<Sports> getTeamList() // baseball
public Sports[] getTeamList() // football

Using the Iterator pattern, Listings 11 and 12 replace these getTeamList() methods with one iterator()
method:

public Iterator<Sports> iterator() // both baseball and football

Listings 11 and 12 have the improved code using the uniform iterator() method:

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;

public class BaseballTeams implements SportsTeams {
 private List<Sports> baseballList;
 private static final String baseballFile = "mlb2006.csv";

 public BaseballTeams() {
 buildTeamList();
 }

 public void buildTeamList() {
 baseballList = new ArrayList<Sports>();
 try {
 BufferedReader file = new BufferedReader(new FileReader(baseballFile));
 String line = null;
 while((line = file.readLine()) != null) {
 String team = null;
 int win = 0;
 int loss = 0;
 StringTokenizer tokenizer = new StringTokenizer(line,",\n");
 while(tokenizer.hasMoreTokens()) {
 team = tokenizer.nextToken();
 win = new Integer(tokenizer.nextToken());
 loss = new Integer(tokenizer.nextToken());
 }
 Sports baseball = new Baseball(team,win,loss);
 baseballList.add(baseball);
 }
 file.close();
 }
 catch(FileNotFoundException exception) {
 exception.printStackTrace();
 }
 catch(IOException exception) {
 exception.printStackTrace();
 }
 }

 public Iterator<Sports> iterator() {
 return new BaseballIterator(baseballList);
 }
 }

 11

Listing 11: The revised BaseballTeams class

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.StringTokenizer;

public class FootballTeams implements SportsTeams {
 private static final int MAX = 32;
 private Sports[] footballList;
 private static final String footballFile = "nfl2006.csv";

 public FootballTeams() {
 buildTeamList();
 }

 public void buildTeamList() {
 footballList = new Sports[MAX];
 try {
 BufferedReader file = new BufferedReader(new FileReader(footballFile));
 String line = null;
 int current = 0;
 while((line = file.readLine()) != null) {
 String team = null;
 int win = 0;
 int loss = 0;
 int tie = 0;
 StringTokenizer tokenizer = new StringTokenizer(line,",\n");
 while(tokenizer.hasMoreTokens()) {
 team = tokenizer.nextToken();
 win = new Integer(tokenizer.nextToken());
 loss = new Integer(tokenizer.nextToken());
 tie = new Integer(tokenizer.nextToken());
 }
 Sports football = new Football(team,win,loss,tie);
 if(current < MAX) {
 footballList[current] = football;
 ++current;
 }
 else {
 System.err.println("--> ERROR: Array is full!");
 }
 }
 file.close();
 }
 catch(FileNotFoundException exception) {
 exception.printStackTrace();
 }
 catch(IOException exception) {
 exception.printStackTrace();
 }
 }

 public Iterator<Sports> iterator() {
 return new FootballIterator(footballList);
 }
 }

Listing 12: The revised FootballTeams class

 12

In both Listings 11 and 12 the iterator() method returns an appropriate concrete iterator. In Listing 11 the method
returns a BaseballIterator, and in Listing 12 the method returns a FootballIterator. Using the Iterator
pattern, the code buries the ugly details (Baseball versus football? List versus array?) beneath the surface.

The original Sports, Baseball, and Football classes (Listings 1 through 3) don't change at all when you adopt
the Iterator Design pattern. But the client application (formerly Listing 6) changes a bit. The revised client application
is in Listing 13:

public class SportsApp {
 public static void main(String[] args) {
 Iterator<Sports> iterator = null;

 // output Major League Baseball teams
 BaseballTeams baseball = new BaseballTeams();
 iterator = baseball.iterator();
 System.out.println("### Major League Baseball 2006 ###\n");
 while(iterator.hasNext()) {
 System.out.println(iterator.next());
 }

 System.out.println();

 // output National Football League teams
 FootballTeams football = new FootballTeams();
 iterator = football.iterator();
 System.out.println("### National Football League 2006 ###\n");
 while(iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
 }

Listing 13: The revised SportsApp class – a client application

When you execute the code in Listing 13 (the good code) you get the output of Figure 1 -- the same as the output of
Listing 6 (also known as "the bad code"). But when other developers read the code in Listing 13, they know nothing
about the data structures lurking behind the scenes. Unlike Listing 6, the code of Listing 13 completely masks the
implementations of BaseballTeams and FootballTeams. The masking is especially helpful when classes (such
as BaseballTeams and FootballTeams) have different underlying implementations.

So What? The Java API Already Has Iterators

The Java API has built-in iterators. So why should you bother coding the BaseballIterator and
FootballIterator classes (Listings 9 and 10)? The simplest answer is, not all aggregates have iterators. For
example, in this article's sports application, the ArrayList (in BaseballTeams) has a built-in iterator, but the
Sports array (in FootballTeams) does not. And what if you need more functionality? The Java API has a
ListIterator (a bi-directional iterator with next() and previous() methods) but maybe your customized
iterator skips records with missing values, hiding such records from your developers downstream. For many problems,
the Iterator design pattern is both the most useful and the most elegant solution.

Resources

Design Patterns – Elements of Reusable Object-Oriented Software

 13

http://www.awprofessional.com/bookstore/product.asp?isbn=0201633612&rl=1
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
ISBN 0-201-63361-2

Head First Design Patterns
http://www.oreilly.com/catalog/hfdesignpat/
Eric & Elisabeth Freeman
ISBN 0-596-00712-4

Object-Oriented Software Construction
http://vig.prenhall.com/catalog/academic/product/0,1144,0136291554.html,00.html
Bertrand Meyer
ISBN 0-13-629155-4

Data & Object Factory
http://www.dofactory.com/Patterns/Patterns.aspx

About the Authors

Barry Burd is a professor in the Department of Mathematics and Computer Science at Drew University in Madison,
New Jersey. When he's not lecturing at Drew University, Dr. Burd leads training courses for professional programmers
in business and industry. He has lectured at conferences in America, Europe, Australia and Asia. He is the author of
several articles and books, including Java For Dummies and Ruby on Rails For Dummies, both published by Wiley.

Michael P. Redlich is a currently a Senior Research Technician at a petrochemical research organization in New Jersey
with extensive experience in developing custom web and scientific laboratory applications. Mike also has experience as
a Technical Support Engineer for Ai-Logix, Inc. where he provided technical support and developed computer
telephony applications for customers. He has been a member of the Amateur Computer Group of New Jersey (ACGNJ)
since 1996, and currently serves on the ACGNJ Board of Directors as President of the club. Mike previously served as
Secretary and has been facilitating the monthly ACGNJ Java Users Group since 2001. His technical experience
includes computer security, relational database design and development, object-oriented design and analysis, C/C++,
Java, and other programming/scripting languages in both the PC and UNIX environments. Mike has co-authored a
number of articles with Barry Burd for Java Boutique. He has also conducted seminars at Trenton Computer Festival
(TCF) since 1998, TCF Professional Conference since 2006, and other venues including the Emerging Technologies
for the Enterprise Conference, the New York Software Industry Association (NYSIA) Java Users Group, the Princeton
Java Users Group, and the Capital District Java Developers Network. Mike is the co-chair of a local Science
Ambassador program where he has conducted numerous science demonstrations for various elementary schools in New
Jersey. Mike holds a Bachelor of Science in Computer Science from Rutgers University.

Appendix

New York Yankees,97,65
Toronto Blue Jays,87,75
Boston Red Sox,86,76
Baltimore Orioles,70,92
Tampa Bay Devil Rays,61,101
Minnesota Twins,96,66
Detroit Tigers,95,67
Chicago White Sox,90,72
Cleveland Indians,78,84
Kansas City Royals,62,100

 14

Oakland A's,93,69
Los Angeles Angels,89,73
Texas Rangers,80,82
Seattle Mariners,78,84
New York Mets,97,65
Philadelphia Phillies,85,77
Atlanta Braves,79,83
Florida Marlins,78,84
Washington Nationals,71,91
St. Louis Cardinals,83,78
Houston Astros,82,80
Cincinnati Reds,80,82
Milwaukee Brewers,75,87
Pittsburgh Pirates,67,95
Chicago Cubs,66,96
San Diego Padres,88,74
Los Angeles Dodgers,88,74
San Francisco Giants,76,85
Arizona Diamondbacks,76,86
Colorado Rockies,76,86

Listing 14: The file mlb2006.csv

New England Patriots,12,4,0
New York Jets,10,6,0
Buffalo Bills,7,9,0
Miami Dolphins,6,10,0
Baltimore Ravens,13,3,0
Cincinnati Bengals,8,8,0
Pittsburgh Steelers,8,8,0
Cleveland Browns,4,12,0
Indianapolis Colts,12,4,0
Tennessee Titans,8,8,0
Jacksonville Jaguars,8,8,0
Houston Texans,6,10,0
San Diego Chargers,14,2,0
Kansas City Chiefs,9,7,0
Denver Broncos,9,7,0
Oakland Raiders,2,14,0
Philadelphia Eagles,10,6,0
Dallas Cowboys,9,7,0
New York Giants,8,8,0
Washington Redskins,5,11,0
Chicago Bears,13,3,0
Green Bay Packers,8,8,0
Minnesota Vikings,6,10,0
Detroit Lions,3,13,0
New Orleans Saints,10,6,0
Carolina Panthers,8,8,0
Atlanta Falcons,7,9,0
Tampa Bay Buccaneers,4,12,0
Seattle Seahawks,9,7,0
St. Louis Rams,8,8,0
San Francisco 49ers,7,9,0
Arizona Cardinals,5,11,0

Listing 15: The file nfl2006.csv

