
 1

Getting to Know Your Java Object’s State of Mind with the State Design
Pattern

by Barry A. Burd and Michael P. Redlich

Introduction

This article, the fifth in a series about design patterns, introduces the State design pattern, one of the 23 design patterns

defined in the legendary 1995 book Design Patterns – Elements of Reusable Object-Oriented Software. The authors of

this book, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, are known affectionately as the Gang of

Four (GoF).

Design Patterns

The GoF book defines 23 design patterns. The patterns fall into three categories:

 A creational pattern abstracts the instantiation process.

 A structural pattern groups objects into larger structures.

 A behavioral pattern defines better communication among objects.

The State design pattern fits into the behavioral category.

The State Pattern

According to the GoF book, the State design pattern:

“Allows an object to alter its behavior when its internal state changes. The object will appear to change its class.”

A change in object behavior can be accomplished by encapsulating states into separate classes. That explains the first

part of the definition. In the second part of the definition, an object can be made to appear to change its class by

referencing the state objects as necessary. This can be accomplished through the use of composition, and as always, we

will demonstrate this through an example.

Motivation

A finite state machine (FSM) is commonly used for modeling things like a vending machine. To demonstrate the

motivation for using the State design pattern, we adapted a subway turnstile application that Robert Martin

(affectionately known as “Uncle Bob”) used in his June 1998 article, UML:Tutorial: Finite State Machines, published

in C++ Report. Our version of a very simple subway turnstile application will be implemented in Java and presented

here.

So let’s first start with a state transition diagram.

mailto:barry@burd.org
mailto:mike@redlich.net
http://rd13doc.cern.ch/Atlas/DaqSoft/sde/uml/UMLFSM.pdf

 2

UNLOCKEDLOCKED

InsertToken / Unlock

PassThru / Lock

PassThru / Alarm InsertToken / Refund

Figure 1: The state transition diagram for the turnstile application

For those of you that may not have studied state transition diagrams for awhile, let’s walk through this diagram as a

quick refresher. The circles represent the states of the turnstile. The turnstile has LOCKED and UNLOCKED states. The

LOCKED state is the initial state since it is denoted with the inner circle. Please note that there are other ways of

denoting the initial state. The arrows represent transitions from one state to another. Each transition is labeled with an

event that will trigger a corresponding action. For example, in the transition from LOCKED to UNLOCKED,

InsertToken is an event and its corresponding action is Unlock. Implementing such a FSM has traditionally been

accomplished using a set of conditionals or using switch/case statements. Let’s see what this looks like in code

using switch/case statements as shown in Listing 1.

public class TurnstileApp

 {

 private State state;

 private enum State

 {

 LOCKED,

 UNLOCKED

 }

 private enum Event

 {

 InsertToken,

 PassThru

 }

 public TurnstileApp()

 {

 // set initial state of turnstile

 state = State.LOCKED;

 }

 public static void main(String[] args)

 {

 TurnstileApp turnstile = new TurnstileApp();

 // first person inserts a token and passes through the turnstile

 System.out.println(turnstile);

 turnstile.transition(Event.InsertToken);

 turnstile.transition(Event.PassThru);

 // second person attempts to pass through turnstile without inserting a token

 System.out.println(turnstile);

 turnstile.transition(Event.PassThru);

 turnstile.transition(Event.InsertToken);

 3

 turnstile.transition(Event.PassThru);

 // third person attempts to pass through turnstile without initially inserting a

token.

 System.out.println(turnstile);

 turnstile.transition(Event.InsertToken);

 turnstile.transition(Event.InsertToken);

 turnstile.transition(Event.PassThru);

 }

 public void transition(Event event)

 {

 switch(state)

 {

 case LOCKED:

 switch(event)

 {

 case InsertToken:

 System.out.println("InsertToken: Accepting token in the " +

state + " state...");

 unlock();

 break;

 case PassThru:

 System.out.println("PassThru: Passing through in the " +

state + " state...");

 alarm();

 break;

 }

 break;

 case UNLOCKED:

 switch(event)

 {

 case InsertToken:

 System.out.println("InsertToken: Accepting token in the " +

state + " state...");

 refund();

 break;

 case PassThru:

 System.out.println("PassThru: Passing through in the " +

state + " state...");

 lock();

 break;

 }

 break;

 }

 }

 public void lock()

 {

 System.out.println("Locking the turnstile...");

 state = State.LOCKED;

 System.out.println(state);

 }

 public void unlock()

 {

 System.out.println("Unlocking the turnstile...");

 state = State.UNLOCKED;

 System.out.println(state);

 }

 public void alarm()

 {

 4

 System.out.println("Alert! Cannot pass through without inserting a token!!");

 }

 public void refund()

 {

 System.out.println("Refunding the token...");

 }

 public String toString()

 {

 StringBuffer result = new StringBuffer();

 result.append("\n-- Welcome to the Turnstile Application --\n");

 result.append(state);

 return result.toString();

 }

 }

Listing 1: A traditional method of implementing the FSM for the subway turnstile application

The states, LOCKED and UNLOCKED, and events, InsertCoin and PassThru, are encapsulated in their respective

enumerations. The methods, lock(), unlock(), refund(), and alarm(), represent the actions triggered by one

of the events. The transition() method handles, well, the transition from one state to the next. Notice that each

state has its own nested switch/case statements. This already seems a bit complicated, but this implementation of

the subway turnstile works well with one major assumption. Say you wanted to expand this application by adding

states. Additional cases to accommodate the additional states must be written, and within these new cases, each will

have their own nested switch/case statements to handle the related events and actions. Hmmm, it appears that the

transition() method will now become even more complicated.. We’re sure that you would agree that this is not

the way to develop the subway turnstile application using an FSM. It is just not resilient to change.

UML Diagram

Figure 1 shows the official UML diagram for the State pattern.

Figure 2: The UML diagram for the State design pattern

The diagram contains four classes:

 The Context class represents a process that manages a set of states. In the subway turnstile application, we

will define a class, Turnstile, as the context.

 The State interface declares the methods for encapsulating the transition events.

 A ConcreteState class implements the State interface for each of the states in an application and takes

care of requests from the Context class.

 5

Using the State Design Pattern

Figure 2 shows a State UML diagram that's specific to the subway turnstile application:

LockedState

«interface»

State

UnlockedState

Turnstile -state

1

*

Figure 2: The UML diagram for the car ordering application.

The source code for the diagram of Figure 2 is shown in Listings 2 to 5:

public interface State

 {

 public void insertToken();

 public void passThru();

 }

Listing 2: The State interface

public class LockedState implements State

 {

 private final Turnstile turnstile;

 public LockedState(Turnstile turnstile)

 {

 this.turnstile = turnstile;

 }

 public void insertToken()

 {

 System.out.println("insertToken(): Accepting token in the " + turnstile.getState() +

" state...");

 turnstile.unlock();

 }

 public void passThru()

 {

 System.out.println("passThru(): Passing through in the " + turnstile.getState() + "

state....");

 turnstile.alarm();

 }

 public String toString()

 {

 return "LOCKED";

 }

 }

Listing 3. The LockedState (ConcreteState) class

public class UnlockedState implements State

 6

 {

 private final Turnstile turnstile;

 public UnlockedState(Turnstile turnstile)

 {

 this.turnstile = turnstile;

 }

 public void insertToken()

 {

 System.out.println("insertToken(): Accepting token in the " + turnstile.getState() +

" state...");

 turnstile.refund();

 }

 public void passThru()

 {

 System.out.println("passThru(): Passing through in the " + turnstile.getState() + "

state...");

 turnstile.lock();

 }

 public String toString()

 {

 return "UNLOCKED";

 }

 }

Listing 4. The UnlockedState (ConcreteState) class

public class Turnstile

 {

 private State state;

 private final State lockedState;

 private final State unlockedState;

 public Turnstile()

 {

 lockedState = new LockedState(this);

 unlockedState = new UnlockedState(this);

 // set initial state of turnstile

 state = lockedState;

 }

 public State getState()

 {

 return state;

 }

 public void setState(State state)

 {

 this.state = state;

 }

 public void insertToken()

 {

 state.insertToken();

 }

 public void passThru()

 {

 state.passThru();

 7

 }

 public void lock()

 {

 System.out.println("Locking the turnstile...");

 setState(lockedState);

 System.out.println(getState());

 }

 public void unlock()

 {

 System.out.println("Unlocking the turnstile...");

 setState(unlockedState);

 System.out.println(getState());

 }

 public void alarm()

 {

 System.out.println("Alert! Cannot pass through without inserting a token!!");

 }

 public void refund()

 {

 System.out.println("Refunding the token...");

 }

 public String toString()

 {

 StringBuffer result = new StringBuffer();

 result.append("\n-- Welcome to the Turnstile Application --\n");

 result.append(getState());

 return result.toString();

 }

 }

Listing 5. The Turnstile (Context) class

The State interface in Listing 2 has been established to declare the methods for transition events. These methods,

insertToken() and passThru(), replace the enumerations InsertToken and PassThru from the FSM

implementation. Each state is now represented by the classes, LockedState and UnlockedState, which

implement the State interface. Notice that these two concrete classes store an instance of Turnstile. This allows

you to call the action-related methods for those states. The Turnstile class, the context in this application, creates

the objects, lockedState and unlockedState, representing each state, and a generic state variable, state,

which will be used as the current state. The action methods, lock(), unlock(), refund(), and alarm(), are

defined along with insertToken() and passThru() methods that are basically a convenience for the current

state to call it’s corresponding event method. As you can see, state changes occur in the actions methods as necessary.

Listing 6 is the client application:

public class TurnstileApp

 {

 private TurnstileApp()

 {

 // using default private constructor in lieu of creating a Singleton object

 }

 public static void main(String[] args)

 {

 Turnstile turnstile = new Turnstile();

 8

 // first person inserts a token and passes through the turnstile

 System.out.println(turnstile);

 turnstile.insertToken();

 turnstile.passThru();

 // second person attempts to pass through turnstile without inserting a token

 System.out.println(turnstile);

 turnstile.passThru();

 turnstile.insertToken();

 turnstile.passThru();

 // third person attempts to pass through turnstile without initially inserting a

token.

 System.out.println(turnstile);

 turnstile.insertToken();

 turnstile.insertToken();

 turnstile.passThru();

 }

 }

Listing 6: The TurnstileApp class – our client application

The client application starts by creating an instance of the Turnstile class. And as you already know, Turnstile

creates the objects for each state. The initial state of the turnstile is LOCKED.

In the first scenario, a person approaches the turnstile and inserts his/her token into the turnstile. The statement,

turnstile.insertToken();

captures this event by calling the insertToken() method defined in the Turnstile class:

public void insertToken()

 {

 state.insertToken();

 }

Since the current state is LOCKED, the state variable, currently assigned to the lockedState variable, calls the

insertToken() method that is defined in the LockedState class.

public void insertToken()

 {

 System.out.println("insertToken(): Accepting token in the " + turnstile.getState() + "

state...");

 turnstile.unlock();

 }

Here is where things change. The unlock() method to execute the Unlock action (as shown in the state transition

diagram) is called to unlock the turnstile.

public void unlock()

 {

 System.out.println("Unlocking the turnstile...");

 setState(unlockedState);

 System.out.println(getState());

 }

 9

The setState() method passes in the object, unlockedState, and assigns it to the variable, state, as the

current state. As control returns to the client application, the turnstile is now unlocked. The next event,

turnstile.passThru();

is called, and is defined as

public void passThru()

 {

 state.passThru();

 }

This time, the passThru() method is called from within the UnlockedState class. Since the turnstile is

UNLOCKED state, all is well. The person passes through the turnstile without incident, and the turnstile then returns to

the LOCKED state.

In one of the other scenarios defined in the client application, a person attempts to pass through the turnstile in the

locked position without inserting a token. In this case, the passThru() method defined in the LockedState class

sends and alert and remains in the locked position. So the application basically delegates which event-related method is

called based on the current state. That is, the statement,

state.passThru();

when state = lockedState is different from when state = unlockedState.

Figure 3 shows the output of the subway turnstile application.

-- Welcome to the Turnstile Application --

LOCKED

insertToken(): Accepting token in the LOCKED state...

Unlocking the turnstile...

UNLOCKED

passThru(): Passing through in the UNLOCKED state...

Locking the turnstile...

LOCKED

-- Welcome to the Turnstile Application --

LOCKED

passThru(): Passing through in the LOCKED state....

Alert! Cannot pass through without inserting a token!!

insertToken(): Accepting token in the LOCKED state...

Unlocking the turnstile...

UNLOCKED

passThru(): Passing through in the UNLOCKED state...

Locking the turnstile...

LOCKED

-- Welcome to the Turnstile Application --

LOCKED

insertToken(): Accepting token in the LOCKED state...

Unlocking the turnstile...

UNLOCKED

insertToken(): Accepting token in the UNLOCKED state...

Refunding the token...

passThru(): Passing through in the UNLOCKED state...

Locking the turnstile...

LOCKED

 10

Figure 3: The output of the subway turnstile application

What Happens When You Add States to the Application?

Let’s say you want to a new state, say an ALARM state, to the subway turnstile application. Hmmm, that sounds like

change. No problem! Design principles are here to guide you! The state transition diagram needs to be changed first.

Let’s take a look at Figure 4:

UNLOCKEDLOCKED

InsertToken / Unlock

PassThru / Lock

PassThru / Alarm

InsertToken / Refund

ALARM

PassThru / Lock

InsertToken / Unlock

Figure 4: The revised state transition diagram for the subway turnstile application

In this new diagram, when someone attempts to pass through the turnstile in the LOCKED state, the turnstile now

transitions to the ALARM state, and you can assume that the turnstile is still locked. If the person then inserts a token,

the turnstile unlocks, and proceeds to the UNLOCKED state. However, if the person still insists on pushing on the

turnstile bar to pass through without inserting a token, the turnstile goes back into LOCKED state.

OK, so now that there’s a new state transition diagram to use as a model, let’s add an AlarmState class to the

application:

public class AlarmState implements State

 {

 private final Turnstile turnstile;

 public AlarmState(Turnstile turnstile)

 {

 this.turnstile = turnstile;

 }

 public void insertToken()

 {

 System.out.println("insertToken(): Accepting token in the " + turnstile.getState() +

" state...");

 turnstile.unlock();

 }

 public void passThru()

 11

 {

 System.out.println("passThru(): Passing through in the " + turnstile.getState() + "

state...");

 turnstile.lock();

 }

 public String toString()

 {

 return "ALARM";

 }

 }

Listing 7. The AlarmState (ConcreteState) class

Since the Turnstile class is the context of the application, this is the only place to make the necessary changes. An

instance variable, alarmState, representing the ALARM state is added first:

private State state;

private final State lockedState;

private final State unlockedState;

private final State alarmState; // new instance variable added

Next, the alarmState object is created in the constructor along with the original states:

public Turnstile()

 {

 lockedState = new LockedState(this);

 unlockedState = new UnlockedState(this);

 alarmState = new AlarmState(this); // create the alarmState object

 // set initial state of turnstile

 state = lockedState;

 }

Finally, the alarm() method, which originally didn’t specify a change of state, now does so to get to the ALARM state:

public void alarm()

 {

 System.out.println("Alert! Cannot pass through without inserting a token!!");

 setState(alarmState); // set the state to ALARM state

 System.out.println(getState()); // send the state status to the console

 }

That’s it! If you run the client application again, you will get the slightly different output as shown in Figure 5:

-- Welcome to the Turnstile Application --

LOCKED

insertToken(): Accepting token in the LOCKED state...

Unlocking the turnstile...

UNLOCKED

passThru(): Passing through in the UNLOCKED state...

Locking the turnstile...

LOCKED

-- Welcome to the Turnstile Application --

LOCKED

passThru(): Passing through in the LOCKED state....

Alert! Cannot pass through without inserting a token!!

ALARM

insertToken(): Accepting token in the ALARM state...

 12

Unlocking the turnstile...

UNLOCKED

passThru(): Passing through in the UNLOCKED state...

Locking the turnstile...

LOCKED

-- Welcome to the Turnstile Application --

LOCKED

insertToken(): Accepting token in the LOCKED state...

Unlocking the turnstile...

UNLOCKED

insertToken(): Accepting token in the UNLOCKED state...

Refunding the token...

passThru(): Passing through in the UNLOCKED state...

Locking the turnstile...

LOCKED

Figure 5: The output of the revised subway turnstile application

What Your Java Object’s State of Mind?

As you can see, the State design pattern is an excellent way to implement FSM-type applications. If you take some time

to compile and run the original version of the application, i.e., the one using all of those pesky switch/case

statements, you will notice that the output looks exactly the same (well, it did until we added the ALARM state). This

was done intentionally, of course, but we wanted to make the point that despite having evolved the application from

using complicated switch/case statements to using the State design pattern, the subway turnstile application

functions exactly the same. The behavior of each state has been localized into its own class, and we’ve closed each

state for modification, but we were able to allow the subway turnstile application to be open for extension when the

ALARM state was added. For those of you that have followed along our series of design patterns, you probably already

know recognize this as the Open-Closed Principle that we’ve demonstrated in previous articles.

Resources

Design Patterns – Elements of Reusable Object-Oriented Software

http://www.awprofessional.com/bookstore/product.asp?isbn=0201633612&rl=1

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

ISBN 0-201-63361-2

Head First Design Patterns

http://www.oreilly.com/catalog/hfdesignpat/

Eric & Elisabeth Freeman

ISBN 0-596-00712-4

UML Tutorial: Finite State Machines

http://rd13doc.cern.ch/Atlas/DaqSoft/sde/uml/UMLFSM.pdf

Robert Martin

C++ Report, June 1998

Object-Oriented Software Construction

http://vig.prenhall.com/catalog/academic/product/0,1144,0136291554.html,00.html

Bertrand Meyer

ISBN 0-13-629155-4

http://www.awprofessional.com/bookstore/product.asp?isbn=0201633612&rl=1
http://www.oreilly.com/catalog/hfdesignpat/
http://rd13doc.cern.ch/Atlas/DaqSoft/sde/uml/UMLFSM.pdf
http://vig.prenhall.com/catalog/academic/product/0,1144,0136291554.html,00.html

 13

Data & Object Factory

http://www.dofactory.com/Patterns/Patterns.aspx

About the Authors

Barry Burd is a professor in the Department of Mathematics and Computer Science at Drew University in Madison,

New Jersey. When he's not lecturing at Drew University, Dr. Burd leads training courses for professional programmers

in business and industry. He has lectured at conferences in America, Europe, Australia and Asia. He is the author of

several articles and books, including “Java 2 For Dummies” and “Eclipse For Dummies,” both published by Wiley.

Michael P. Redlich is a Senior Research Technician (formerly a Systems Analyst) at ExxonMobil Research &

Engineering, Co. in Clinton, New Jersey with extensive experience in developing custom web and scientific laboratory

applications. Mike also has experience as a Technical Support Engineer for Ai-Logix, Inc. where he developed

computer telephony applications. He holds a Bachelor of Science in Computer Science from Rutgers University. In his

spare time, Mike facilitates the ACGNJ Java Users Group and serves as ACGNJ Secretary. Mike has also co-written

several articles for Java Boutique, and his computing experience includes computer security, relational database design

and development, object-oriented design and analysis, C/C++, Java, Visual Basic, FORTRAN, Pascal, MATLAB,

HTML, XML, ASP, VBScript, and JavaScript in both the PC and UNIX environments.

http://www.dofactory.com/Patterns/Patterns.aspx
mailto:barry@burd.org
mailto:mike@redlich.net
http://www.exxonmobil.com/
http://www.ai-logix.com/
http://www.rutgers.edu/
http://www.javasig.org/
http://www.acgnj.org/
http://www.javaboutique.com/

