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Encapsulating Algorithms with the Template Method Design Pattern 
 
by Barry A. Burd and Michael P. Redlich 
 

Introduction 
 
This article, the sixth in a series about design patterns, introduces the Template Method design pattern, one of the 23 
design patterns defined in the legendary 1995 book Design Patterns – Elements of Reusable Object-Oriented Software. 
The authors of this book, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, are known affectionately as 
the Gang of Four (GoF). 
 

Design Patterns 
 
The GoF book defines 23 design patterns. The patterns fall into three categories: 
 

• A creational pattern abstracts the instantiation process. 
• A structural pattern groups objects into larger structures. 
• A behavioral pattern defines better communication among objects. 

 
The Template Method design pattern fits into the behavioral category. 
 

The Template Method Pattern 
 
According to the GoF book, the Template Method design pattern “defines the skeleton of an algorithm in a method, 
deferring some steps to subclasses.  Template Method lets subclasses redefine certain steps of an algorithm without 
changing the algorithm’s structure.” 
 

Motivation 
 
Warning: The example that follows uses some mathematical terminology. If math isn't your strong suit, don't worry. 
Just gloss over any details that make you uneasy. You can skim all you want and still get the gist of the idea. 
 
Let’s say you want to calculate the area under a curve, say ( ) ( )xxf sin= , from 0 to π within an application. Figure 1 is 
a graphical representation of this function. 
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Figure 1: The plot of the curve ( ) ( )xxf sin=  
 
To calculate the area under a curve, you dust off your old Calculus book. After pouring through the chapter on definite 
integrals, you come to the following conclusions: 
 

* The area under the curve in Figure 1 is 2. Whew! That wasn't difficult, but,... 
* Finding the areas under some other curves can be very tricky. 
 

To help you find the areas under some curves, you use a numerical method. With a numerical method, you divide an 
area into smaller, more manageable chunks. Then you add up the areas of all the chunks. The chunks may not fit 
exactly inside the curve, so you don't always get an exact answer. But in many situations, an approximate answer is 
good enough. 
 
The simplest numerical methods are the Trapezoid Rule and Simpson’s Rule. Don't worry - you don't have to 
understand the math in order to read the rest of this article. If you're curious, the difference between these two rules is 
the shape of the chunks. The Trapezoidal Rule uses rectangular chunks (as in Figure 2), and Simpson's Rule uses 
chunks slightly curved chunks (as in Figure 3). 
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Figure 2: Approximating ( )sin x  with the Trapezoidal Rule 

 

 
Figure 3: Approximating ( )sin x  with Simpson's Rule 

 
(Disclaimer: The authors offer their sincerest apologies to the estate of Thomas Simpson for mangling his rule in Figure 
3. Apparently the Trapezoid's aren't happy with us either.) 
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The choice between Simpson's Rule and the Trapezoidal Rule depends on several factors, including the shape of the 
original curve, the amount of error you can tolerate, and the amount of computing time you can devote. 
 
You can understand most of this article's Java code without knowing anything about the formulas for Simpson's Rule 
and the Trapezoidal Rule. But if you're interested, both Simpson's Rule and the Trapezoidal Rule make use of four 
basic variables. The variables are illustrated in Figure 4. 

 
Figure 4: The variables used in applying the Trapezoidal Rule or Simpson's Rule 

 
 
The formulas for the Trapezoidal Rule and Simpson's Rule are different but the procedures for applying these formulas 
are the same. Here's an outline that applies to both rules: 
 

• Call a method, getN(), to obtain the value of n, the number of intervals. 
• Call a method, getEndpoints(), to obtain the values of a and b, the endpoints for the definite integral. 
• Call a method, calcH(), to calculate the value of h, the width of each interval. 
• Call a method, calcArea(), to calculate the area under the curve according to the formula. 

o The calcArea() method uses the methods, calcXi() and calcFunction(), to assist in 
calculating the area under the curve. 

 



 5

The code in Listing 1 applies the Trapezoid Rule formula, and the code in Listing 2 applies the Simpson’s Rule formula. 
If you're not interested in mathematical formulas, you can treat Listings 1 and 2 as black boxes. (Go ahead and ignore 
Listings 1 and 2. No one will be offended.) 
 
public class TrapezoidRule 
 { 
 private double a; // the lower limit of the integration 
 private double b; // the upper limit of the integration 
 private int n; // the number of points for the integration 
 
 public TrapezoidRule() 
  { 
  setA(0); 
  setB(1); 
  setN(10); 
  } 
 
 public TrapezoidRule(double a,double b,int n) 
  { 
  setA(a); 
  setB(b); 
  setN(n); 
  } 
 
 public double integrate() 
  { 
  int n = getN(); 
  double[] endpoints = getEndpoints(); 
  double h = calcH(endpoints[0],endpoints[1],n); 
  double area = calcArea(n,h); 
  return area; 
  } 
 
 private double getA() 
  { 
  return a; 
  } 
 
 private void setA(double a) 
  { 
  this.a = a; 
  } 
 
 private double getB() 
  { 
  return b; 
  } 
 
 private void setB(double b) 
  { 
  this.b = b; 
  } 
 
 private int getN() 
  { 
  return n; 
  } 
 
 private void setN(int n) 
  { 
  this.n = n; 
  } 
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 private double[] getEndpoints() 
  { 
  double[] endpoints = 
   { 
   getA(), 
   getB(), 
   }; 
  return endpoints; 
  } 
 
 private double calcH(double a,double b,int n) 
  { 
  return (a + b) / (double)n; 
  } 
 
 private double calcArea(int n,double h) 
  { 
  double xi = 0.0; 
  double area = 0.0; 
  double factor = h / 2D; 
  for(int i = 0;i <= n;++i) 
   { 
   xi = calcXi(i,h); 
   if(i == 0 || i == n) 
    area += calcFunction(xi); 
   else 
    area += 2D * calcFunction(xi); 
   } 
  return factor * area; 
  } 
 
 private double calcXi(int i,double h) 
  { 
  return getA() + i * h; 
  } 
 
 private double calcFunction(double x) 
  { 
  return Math.sin(x); 
  } 
 } 
 

Listing 1: The Trapezoid Rule class 
 
public class SimpsonsRule 
 { 
 private double a; // the lower limit of the integration 
 private double b; // the upper limit of the integration 
 private int n; // the number of points for the integration 
 
 public SimpsonsRule() 
  { 
  setA(0); 
  setB(1); 
  setN(10); 
  } 
 
 public SimpsonsRule(double a,double b,int n) 
  { 
  setA(a); 
  setB(b); 
  setN(n); 
  } 
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 public double integrate() 
  { 
  int n = getN(); 
  if(!isEven(n)) 
   setN(++n); 
  double[] endpoints = getEndpoints(); 
  double h = calcH(endpoints[0],endpoints[1],n); 
  double area = calcArea(n,h); 
  return area; 
  } 
 
 private double getA() 
  { 
  return a; 
  } 
 
 private void setA(double a) 
  { 
  this.a = a; 
  } 
 
 private double getB() 
  { 
  return b; 
  } 
 
 private void setB(double b) 
  { 
  this.b = b; 
  } 
 
 private int getN() 
  { 
  return n; 
  } 
 
 private void setN(int n) 
  { 
  this.n = n; 
  } 
 
 private double[] getEndpoints() 
  { 
  double[] endpoints = 
   { 
   getA(), 
   getB(), 
   }; 
  return endpoints; 
  } 
 
 private double calcH(double a,double b,int n) 
  { 
  return (a + b) / (double)n; 
  } 
 
 private double calcArea(int n,double h) 
  { 
  double xi = 0.0; 
  double area = 0.0; 
  double factor = h / 3D; 
  for(int i = 0;i <= n;++i) 
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   { 
   xi = calcXi(i,h); 
   if(i == 0 || i == n) 
    area += calcFunction(xi); 
   else if(isEven(i)) 
    area += 2D * calcFunction(xi); 
   else 
    area += 4D * calcFunction(xi); 
   } 
  return factor * area; 
  } 
 
 private double calcXi(int i,double h) 
  { 
  return getA() + i * h; 
  } 
 
 private double calcFunction(double x) 
  { 
  return Math.sin(x); 
  } 
 
 private boolean isEven(int n) 
  { 
  if(n % 2 == 0) 
   return true; 
  else 
   return false; 
  } 
 } 
 

Listing 2: The Simpson’s Rule class 
 
Listing 1 contains its own definitions of the basic methods (getN(), getEndpoints(), and so on). Listing 1 also 
contains a method named integrate() which combines calls to the basic methods and produces a numerical answer 
(an approximate area under a curve). 
 
Similarly, Listing 2 contains definitions of the basic methods, and contains a big integrate() method. Hmm! 
Maybe we can take advantage of the similarity between Listings 1 and 2. 
 
The client code (Listing 3) pulls everything together. 
 
public class IntegrationApp 
 { 
 public static void main(String[] args) 
  { 
  if(args.length < 3) 
   { 
   System.out.println("Usage: Integration a b n"); 
   System.exit(1); 
   } 
  double a = Double.parseDouble(args[0]); 
  double b = Double.parseDouble(args[1]); 
  int n = Integer.parseInt(args[2]); 
  String function = "f(x) = sin(x)"; 
  System.out.println("-- Numerical Integration --"); 
  System.out.println("Function: " + function); 
  System.out.println("a = " + a); 
  System.out.println("b = " + b); 
  System.out.println("n = " + n); 
  TrapezoidRule trapezoid = new TrapezoidRule(a,b,n); 
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  System.out.println("Trapezoid Rule: area = " + trapezoid.integrate()); 
  SimpsonsRule simpsons = new SimpsonsRule(a,b,n); 
  System.out.println("Simpson's Rule: area = " + simpsons.integrate()); 
  } 
 } 
 

Listing 3: The IntegrationApp class – the client application 
 
Sample output of the client code appears in Figure 5. 
 
-- Numerical Integration -- 
Function: f(x) = sin(x) 
a = 0.0 
b = 3.14159265 
n = 25 
Trapezoid Rule: area = 1.9973674125516483 
Simpson's Rule: area = 2.0000023725694533 
 

Figure 5: The output of the numerical integration application 
 
At this point, you may be asking yourself the following questions: 

• Why is the Simpson’s Rule result different from the Trapezoid Rule result? 
• Why are the methods duplicated in each of the classes? 
• Arrrg! Why are these guys using a math example? 

 
Notice the duplication of methods in both the TrapezoidRule and SimpsonsRule classes. Almost all of the 
methods in the two classes are exactly the same. The only exception is in the calcArea() method that accounts for 
the differences between the Trapezoid Rule and Simpson’s Rule algorithms. “Don’t Repeat Yourself” is a good rule of 
thumb in programming, but Listings 1 and 2 contain lots of repetition. Listings 1 and 2 can certainly use some 
improvement. 
 
(To answer the "Arrrg" question, we used a math example because we just happen to like math. If you've followed 
along with the authors in this design pattern series, you know that we always try to use practical examples. This 
Template Method pattern is the perfect opportunity for us to use a real math example to demonstrate a design pattern. 
So there!) 

UML Diagram 
 
Figure 6 shows the official UML diagram for the Template Method pattern. 
 

 
 

Figure 6: The UML diagram for the Template Method design pattern 
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The diagram contains two classes: 
 

• The AbstractClass holds the templateMethod() method which defines the algorithm for a particular 
task. The templateMethod() may contain abstract and concrete primitiveOperation() methods 
that declare abstract methods for subclasses to implement and concrete methods for subclasses to share, 
respectively. 

• Each ConcreteClass implements its own version of the abstract primitiveOperation() methods that 
were declared in AbstractClass. 

 

Using the Template Method Design Pattern 
 
Using Figure 6 as a guide, you can refactor Listings 1 and 2 using the UML diagram in Figure 7. 
 

 
 

Figure 7: The UML diagram for the numerical integration application. 
 
A new abstract base class named Integration  encapsulates the methods that the Trapezoid Rule and Simpson’s 
Rule algorithms share. The Integration class also declares any abstract methods that the two rules implement 
differently. (See Listing 4.) 
 
public abstract class Integration 
 { 
 private double a; // the lower limit of the integration 
 private double b; // the upper limit of the integration 
 private int n; // the number of points for the integration 
 
 public Integration() 
  { 
  setA(0); 
  setB(1); 
  setN(10); 
  } 
 
 public Integration(double a,double b,int n) 
  { 
  setA(a); 
  setB(b); 
  setN(n); 
  } 
 
 public double integrate() 
  { 
  int n = getN(); 
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  if(!isEven(n) && this instanceof SimpsonsRule) 
   setN(++n); 
  double[] endpoints = getEndpoints(); 
  double h = calcH(endpoints[0],endpoints[1],n); 
  double area = calcArea(n,h); 
  return area; 
  } 
 
 protected double getA() 
  { 
  return a; 
  } 
 
 protected void setA(double a) 
  { 
  this.a = a; 
  } 
 
 protected double getB() 
  { 
  return b; 
  } 
 
 protected void setB(double b) 
  { 
  this.b = b; 
  } 
 
 protected int getN() 
  { 
  return n; 
  } 
 
 protected void setN(int n) 
  { 
  this.n = n; 
  } 
 
 protected double[] getEndpoints() 
  { 
  double[] endpoints = 
   { 
   getA(), 
   getB(), 
   }; 
  return endpoints; 
  } 
 
 protected double calcH(double a,double b,int n) 
  { 
  return (a + b) / (double)n; 
  } 
 
 protected abstract double calcArea(int n,double h); 
 
 protected double calcXi(int i,double h) 
  { 
  return getA() + i * h; 
  } 
 
 protected double calcFunction(double x) 
  { 
  return Math.sin(x); 
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  } 
 
 protected boolean isEven(int n) 
  { 
  return true; 
  } 
 } 
 

Listing 4: The Integration class (the AbstractClass in Figure 6) 
 
The only abstract method in Listing 4 is calcArea(). The refactored TrapezoidRule and SimpsonsRule 
classes (Listings 5 and 6) are subclasses from the Integration base class. These refactored TrapezoidRule and 
SimpsonsRule classes implement their own versions of calcArea(). They share all of the methods defined in 
Integration. This example declares only one abstract method, but in general the Template Method design pattern 
can involve any number of abstract Java methods. 
 
public class TrapezoidRule extends Integration 
 { 
 public TrapezoidRule() 
  { 
  super(); 
  } 
 
 public TrapezoidRule(double a,double b,int n) 
  { 
  super(a,b,n); 
  } 
 
 protected double calcArea(int n,double h) 
  { 
  double xi = 0.0; 
  double area = 0.0; 
  double factor = h / 2D; 
  for(int i = 0;i <= n;++i) 
   { 
   xi = calcXi(i,h); 
   if(i == 0 || i == n) 
    area += calcFunction(xi); 
   else 
    area += 2D * calcFunction(xi); 
   } 
  return factor * area; 
  } 
 } 
 

Listing 5. The TrapezoidRule class  (a ConcreteClass from Figure 6)  
 
public class SimpsonsRule extends Integration 
 { 
 public SimpsonsRule() 
  { 
  super(); 
  } 
 
 public SimpsonsRule(double a,double b,int n) 
  { 
  super(a,b,n); 
  } 
 
 protected double calcArea(int n,double h) 
  { 
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  double xi = 0.0; 
  double area = 0.0; 
  double factor = h / 3D; 
  for(int i = 0;i <= n;++i) 
   { 
   xi = calcXi(i,h); 
   if(i == 0 || i == n) 
    area += calcFunction(xi); 
   else if(isEven(i)) 
    area += 2D * calcFunction(xi); 
   else 
    area += 4D * calcFunction(xi); 
   } 
  return factor * area; 
  } 
 
 protected boolean isEven(int n) 
  { 
  if(n % 2 == 0) 
   return true; 
  else 
   return false; 
  } 
 } 
 

Listing 6. The SimpsonsRule class  (a ConcreteClass from Figure 6)  
 
The original client code in Listing 3 works with the new Template Method pattern code in Listings 4, 5, and 6. This is 
an excellent example of the separation of an implementation from its interface. 

Details, Details, Details 
 
What happens under the hood in Listings 3 through 6? After getting the necessary variables from the command line 
(variables a, b, and n) and printing out some basic information to the console, the code in Listing 3 creates an instance 
of the TrapezoidRule class. 
 
TrapezoidRule trapezoid = new TrapezoidRule(a,b,n); 
 
The base class, Integration, stores the variables, a, b, and n. (Actually the Integration class passes these 
variables to the TrapezoidRule constructor, which immediately passes the variables back to the of Integration 
parent constructor. It's very slick.) After all the preliminaries, Listing 3 starts the big calculations by calling the 
integrate() method: 
 
System.out.println("Trapezoid Rule: area = " + trapezoid.integrate()); 
 
Everything pivots on the integrate() method in Listing 4 (which corresponds to the template method in Figure 6). 
This all important integrate() method is defined in the Integration class as follows: 
 
public double integrate() 
 { 
 int n = getN(); 
 if(!isEven(n) && this instanceof SimpsonsRule) 
  setN(++n); 
 double[] endpoints = getEndpoints(); 
 double h = calcH(endpoints[0],endpoints[1],n); 
 double area = calcArea(n,h); 
 return area; 
 } 
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The calls to getN(), getEndpoints(), and calcH()are encapsulated in the base class, Integration. But the 
call to calcArea() is where everything changes. With an instance of the TrapezoidRule class, you get the 
calcArea() method defined in the TrapezoidRule class. And with an instance of the SimpsonsRule class, 
the program calls the SimpsonsRule class's calcArea() method. 

... and One More Detail 
 
The integrate() method contains a conditional statement: 
 
if(!isEven(n) && this instanceof SimpsonsRule) 
 setN(++n); 
 
For Simpson’s Rule to work correctly, the value of n must be even. So the Integration class has an isEven() 
method: 
 
protected boolean isEven(int n) 
 { 
 return true; 
 } 
 
But this isEven() method simply returns the value of true! What's going on here? 
 
The SimpsonsRule class overrides the isEven() method: 
 
protected boolean isEven(int n) 
 { 
 if(n % 2 == 0) 
  return true; 
 else 
  return false; 
 } 
 
Now this is useful. The isEven() method is a hook for subclasses to use as appropriate. The base class, 
Integrate, defines a vanilla version of the isEven() method. Then subclasses override the isEven() method 
with a more concrete version.  
 
The only trick in the numerical integration application is to keep an instance of TrapezoidRule from calling the 
vanilla version of isEven(). That why the integrate() method's condition uses the instanceof operator. 
 

Why Use the Template Method? 
 
The Template Method eliminates the duplication of methods in separate, but related classes. This obeys the principle of 
code re-use, and leaves you with only one place to make changes in the code. 
 
But the Template Method pattern has another important advantage. With this article's Template Method example, 
control of the numerical integration application moves from the individual classes (TrapezoidRule and 
SimpsonsRule) to a central class, Integration. The base class relies on the derived classes only when the base 
class needs the methods specific to those derived classes, i.e., for the implementation of the abstract methods. 
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Other Uses of the Template Method 
 
The Template Method encapsulates all kinds of algorithms (not only math algorithms, like the algorithm in this article's 
example). Any application that uses a step-by-step procedure to accomplish a task is a candidate for the Template 
Method design pattern. 
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